Small Package，High Performance，Asynchronies Boost for 10 WLED Driver

General Description

The RT9293 is a high frequency，asynchronous boost converter．The internal MOSFET can support up to 10 White LEDs for backlighting and OLED power application， and the internal soft start function can reduce the inrush current．The device operates with $1-\mathrm{MHz}$ fixed switching frequency to allow small external components and to simplify possible EMI problems．For the protection，the RT9293A provides 50V OVP and the RT9293B provides $50 \mathrm{~V} / 20 \mathrm{~V}$ OVP to allow inexpensive and small－output capacitors with lower voltage ratings．The LED current is initially set with the external sense resistor $\mathrm{R}_{\text {SET }}$ ．The RT9293 is available in the tiny package type TSOT－23－6 and WDFN－8L 2x2 packages to provide the best solution for PCB space saving and total BOM cost．

Ordering Information

RT9293D（－ㅁ）
－Package Type
J6：TSOT－23－6
QW ：WDFN－8L 2x2（W－Type）
－Operating Temperature Range
G：Green（Halogen Free with Commer－ cial Standard）
OVP Voltage
Default ：50V（RT9293A／B）
20：20V（RT9293B）
Feedback Voltage Reference
A ：104mV
B ：300mV
Note ：
Richtek Green products are ：
\} RoHS compliant and compatible with the current requirements of IPC／JEDEC J－STD－020．
\} Suitable for use in SnPb or Pb －free soldering processes．

Marking Information

For marking information，contact our sales representative directly or through a Richtek distributor located in your area，otherwise visit our website for detail．
area，otherwise visit our website for detail．

Features

। VIN Operating Range ：2．5V to 5．5V
I Internal Power N－MOSFET Switch
，Wide Range for PWM Dimming（ 100 Hz to200kHz）
I Minimize the External Component Counts
I Internal Soft Start
Internal Compensation
Under Voltage Protection
，Over Voltage Protection
，Over Temperature Protection
Small TSOT－23－6 and 8－Lead WDFN Packages
RoHS Compliant and Halogen Free

Applications

，Cellular Phones
，Digital Cameras
，PDAs and Smart Phones and MP3 and OLED．
，Portable Instruments

Pin Configurations

（TOP VIEW）

TSOT－23－6

WDFN－8L 2×2

Typical Application Circuit

Functional Pin Description

Pin No.		Pin Name	
RT9293 \square GJ6	RT9293 \square GQW		
1	8	LX	Switching Pin.
2	9 (Exposed pad)	GND	Ground Pin. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
3	6	FB	Feedback Pin, put a resistor to GND to setting the current.
4	4	EN	Chip Enable (Active High).
5	3	VOUT	Output Voltage Pin.
6	2	VIN	Input Supply.
--	7	NC	No Internal Connection.

Function Block Diagram

Absolute Maximum Ratings (Note 1)
, Supply Input Voltage, $\mathrm{V}_{\mathbb{N}}$ -0.3 V to 6 V
, Switching Pin, LX -0.3 V to 50 V
, VOUT -0.3 V to 46 V
। Other Pins -0.3 V to 6 V
। Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$TSOT-23-60.392W
WDFN-8L2x2 0.606W
। Package Thermal Resistance (Note 3)
TSOT-23-6, θ_{JA} $255^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-8L2x2, $\theta_{\mathrm{JA}}-$ $165^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-8L $2 \times 2, \theta_{\mathrm{Jc}}$ $20^{\circ} \mathrm{C} / \mathrm{W}$
। Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
। Junction Temperature $150^{\circ} \mathrm{C}$
, Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Recommended Operating Conditions (Note 2)
। Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
। Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}, \mathrm{C}_{\text {IN }}=2.2 \mathrm{uF}, \mathrm{C}_{\text {OUT }}=0.47 \mathrm{uF}$, $\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~L}=22 \mathrm{uH}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Conditions	Min	Typ	Max	Unit
Input Voltage		$\mathrm{V}_{\text {IN }}$		2.5	--	5.5	V
Under Voltage Lock Out		VUVLO		2	2.2	2.45	V
UVLO Hystersis				-	0.1	--	V
Quiescent Current		lQ	FB $=1.5 \mathrm{~V}$, No Switching	-	400	600	uA
Supply Current		IN	$\mathrm{FB}=0 \mathrm{~V}$, Switching	-	1	2	mA
Shutdown Current		ISHDN	$\mathrm{V}_{\mathrm{EN}}<0.4 \mathrm{~V}$	-	1	4	uA
Line Regulation			$\mathrm{V}_{1 \mathrm{~N}}=3$ to 4.3 V	-	1	--	\%
Load Regulation			1 mA to 20 mA	-	1	--	\%
Operation Frequency		fosc		0.75	1	1.25	MHz
Maximum Duty Cycle				90	92	--	\%
Clock Rate				0.1	--	200	kHz
Feedback Reference Voltage	RT9293A	$V_{\text {REF }}$		94	104	114	mV
	RT9293B			285	300	315	
On Resistance		$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$		-	0.7	1.2	Ω

To be continued

Parameter		Symbol	Conditions	Min	Typ	Max	Unit
EN Threshold	Logic-High Voltage	V_{IH}		1.4	--	--	V
	Logic-Low Voltage	$\mathrm{V}_{\text {IL }}$		--	--	0.5	V
EN Sink Current		I_{H}		--	1	--	uA
EN Hystersis				--	0.1	--	V
Over-Voltage Threshold	OVP = 50V	Vovp		42	46	50	V
	RT9293B-20			16	17.5	20	V
Over-Current Threshold		IOCP		1	1.2	--	A
OTP		Totp		--	160	--	${ }^{\circ} \mathrm{C}$
OTP Hystersis				--	30	--	${ }^{\circ} \mathrm{C}$
Shutdown Delay		TSHDN		--	20	--	ms

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. The device is not guaranteed to function outside its operating conditions.
Note 3. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. The case point of θ_{Jc} is on the expose pad for the WDFN package.

Typical Operating Characteristics

Output Voltage vs. Output Current

Frequency vs. Input Voltage

Efficiency vs. Input Voltage

Quiescent Current vs. Input Voltage

Frequency vs. Temperature

Reference Voltage vs. Output Current

LED Current vs. Duty

Reference Voltage vs. Temperature

Enable Threshold vs. Input Voltage

Power On from EN

Applications Information

LED Current Setting

The loop of Boost structure will keep the FB pin voltage equal to the reference voltage $\mathrm{V}_{\text {REF }}$. Therefore, when $\mathrm{R}_{\text {SET }}$ connects FB pin and GND, the current flows from Vout through LED and $R_{S E T}$ to $G N D$ will be decided by the current on $R_{S E T}$, which is equal to following equation.

$$
\mathrm{L}_{\mathrm{LED}}=\frac{\mathrm{V}_{\mathrm{REF}}}{R_{S E T}}
$$

Dimming Control

a. Using a PWM Signal to EN Pin

For the brightness dimming control of the RT9293, the IC provides typically 300 mV feedback voltage when the EN pin is pulled constantly high. However, EN pin allows a PWM signal to reduce this regulation voltage by changing the PWM duty cycle to achieve LED brightness dimming control. The relationship between the duty cycle and FB voltage can be calculated as following equation.
$V_{F B}=$ Duty $\times 300 \mathrm{mV}$
Where
Duty = duty cycle of the PWM signal
$300 \mathrm{mV}=$ internal reference voltage
As shown in Figure 1, the duty cycle of the PWM signal is used to cut the internal 300 mV reference voltage. An internal low pass filter is used to filter the pulse signal. And then the reference voltage can be made by connecting the output of the filter to the error amplifier for the FB pin voltage regulation.

However, the internal low pass filter 3db frequency is 500 Hz . When the dimming frequency is lower then 500 Hz , V_{A} is also a PWM signal and the LED current is controlled directly by this signal. When the frequency is higher than 500 Hz , PWM is filtered by the internal low pass filter and the V_{A} approach a DC signal. And the LED current is a DC current which elimate the audio noise. Two figures of PWM Dimming from EN are shown in Typical Operating Characteristics section and the PWM dimming frequency is 200 Hz and 20 kHz respectively.

But there is an offset in error amplifier which will cause the V_{A} variation. In low PWM duty signal situation, the
filtered reference voltage is low and the offset can cause bigger variation of the output current. So the RT9293A is not recommend to be dimming by the EN pin. For the RT9293B, the minimum duty vs frequency is listed in

Figure 1. Block Diagram of Programmable FB Voltage Using PWM Signal

	Duty Minimum
Dimming frequency $<500 \mathrm{~Hz}$	4%
Dimming frequency $>500 \mathrm{~Hz}$	10%

b. Using a DC Voltage

Using a variable DC voltage to adjust the brightness is a popular method in some applications. The dimming control using a DC voltage circuit is shown in Figure 2. As the DC voltage increases, the current flows through R3 increasingly and the voltage drop on R3 increase, i.e. the LED current decreases. For example, if the VDC range is from 0 V to 2.8 V and assume the RT9293 is selected which $\mathrm{V}_{\text {REF }}$ is equal to 0.3 V , the selection of resistors in Figure 2 sets the LED current from 21 mA to 0 mA . The LED current can be calculated by the following equation.

Figure 2. Dimming Control Using a DC Voltage

c. Using a Filtered PWM signal

Another common application is using a filtered PWM signal as an adjustable DC voltage for LED dimming control. A filtered PWM signal acts as the DC voltage to regulate the output current. The recommended application circuit is shown as Figure 3. In this circuit, the output ripple depends on the frequency of PWM signal. For smaller output voltage ripple ($<100 \mathrm{mV}$), the recommended frequency of 2.8 V PWM signal should be above 2 kHz . To fix the frequency of PWM signal and change the duty cycle of PWM signal can get different output current. The LED current can be calculated by the following equation.

Figure 3. Dimming Control Using a Filtered PWM Signal

Figure 4. PWM Duty Cycle vs. LED Current

By the above equation and the application circuit shown in Figure 3, and assume the RT9293 is selected which $\mathrm{V}_{\text {REF }}$ is equal to 0.3 V . Figure 4 shows the relationship between the LED current and PWM duty cycle. For example, when the PWM duty is equal to 60%, the LED current will be equal to 8.6 mA . When the PWM duty is equal to 40%, the LED current will be equal to 12.7 mA .

Constant Output Voltage Control

The output voltage of the R9293 can be adjusted by the divider circuit on the FB pin. Figure 5 shows the application circuit for the constant output voltage. The output voltage can be calculated by the following Equations.
$V_{\text {OUT }}=V_{\text {REF }} \times \frac{R 1+R 2}{R 2} ; R 2>10 k$

Figure 5. Constant Output Voltage Application

Figure 6. Application for Driving 3X 13 WLEDs

Application for Driving 3×13 WLEDs

The RT9293 can drive different WLEDs topology. For example, the Figure 6 shows the 3×13 WLEDs and total current is equal to 260 mA . The total WLEDs current can be set by the $R_{\text {SET }}$ which is equal to following equation.
$I_{\text {Total }}=\frac{V_{\text {REF }}}{R_{\text {SET }}}$

Power Sequence

In order to assure the normal soft start function for suppressing the inrush current the input voltage should be ready before EN pulls high.

Soft-Start

The function of soft-start is made for suppressing the inrush current to an acceptable value at the beginning of poweron. The RT9293 provides a built-in soft-start function by clamping the output voltage of error amplifier so that the duty cycle of the PWM will be increased gradually in the soft-start period.

Current Limiting

The current flow through inductor as charging period is detected by a current sensing circuit. As the value comes across the current limiting threshold, the N-MOSFET will be turned off so that the inductor will be forced to leave charging stage and enter discharging stage. Therefore, the inductor current will not increase over the current limiting threshold

OVP/UVLO/OTP

The Over Voltage Protection is detected by a junction breakdown detecting circuit. Once Vout goes over the detecting voltage, LX pin stops switching and the power N -MOSFET will be turned off. Then, the $\mathrm{V}_{\text {Out }}$ will be clamped to be near $\mathrm{V}_{\text {ovp }}$. As the output voltage is higher than a specified value or input voltage is lower than a specified value, the chip will enter protection mode to prevent abnormal function. As the die temperature is higher then $160^{\circ} \mathrm{C}$, the chip also will enter protection mode. The power MOSFET will be turned off during protection mode to prevent abnormal operation.

Inductor Selection

The recommended value of inductor for 10 WLEDs applications is from 10 uH to 47 uH . Small size and better efficiency are the major concerns for portable devices, such as the RT9293 used for mobile phone. The inductor should have low core loss at 1 MHz and low DCR for better efficiency. The inductor saturation current rating should be considered to cover the inductor peak current.

Capacitor Selection

Input ceramic capacitor of 2.2 uF and output ceramic capacitor of 1 uF are recommended for the RT9293 applications for driving 10 series WLEDs. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula :
$P_{D(\text { MAX })}=\left(T_{J(\text { MAX })}-T_{A}\right) / \theta_{J A}$
Where $T_{J(M A X)}$ is the maximum operation junction temperature, T_{A} is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For the recommended operating conditions specification of RT9293, the maximum junction temperature of the die is $125^{\circ} \mathrm{C}$. The junction to ambient thermal resistance θ_{JA} is layout dependent. The junction to ambient thermal resistance for TSOT-23-6 package is $255^{\circ} \mathrm{C} / \mathrm{W}$ and for WDFN-8L 2×2 package is $165^{\circ} \mathrm{C} / \mathrm{W}$ on the standard JEDEC 51-3 single layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by following formula :
$P_{D(\text { max })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(165^{\circ} \mathrm{C} / \mathrm{W}\right)=0.606 \mathrm{~W}$ for WDFN-8L2x2 packages
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(255^{\circ} \mathrm{C} / \mathrm{W}\right)=0.392 \mathrm{~W}$ for TSOT-23-6 packages

The maximum power dissipation depends on operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J} \text { (MAX) }}$ and thermal resistance θ_{JA}. For RT9293 packages, the Figure 7 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

Figure 7. Derating Curves for RT9293 Packages

Layout Consideration

For best performance of the RT9293, the following guidelines must be strictly followed.
\} Input and Output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.
\} The GND and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.
\} Keep the main current traces as possible as short and wide.
\} LX node of DC-DC converter is with high frequency voltage swing. It should be kept at a small area.
\} Place the feedback components as close as possible to the IC and keep away from the noisy devices.

The inductor should be placed as close as possible to the switch pin to minimize the noise coupling into other circuits.
LX node copper area should be minimized
for reducing EMI.
The Cout should be connected directly from the output schottky diode to ground rather than

FB node copper area should be minimized and keep far away from noise sources (LX pin) and RS should be as close as possible to FB pin.

Figure 8. The Layout Consideration of the RT9293

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.700	1.000	0.028	0.039
A1	0.000	0.100	0.000	0.004
B	1.397	1.803	0.055	0.071
b	0.300	0.559	0.012	0.022
C	2.591	3.000	0.102	0.118
D	2.692	3.099	0.106	0.122
e	0.838	1.041	0.033	0.041
H	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

TSOT-23-6 Surface Mount Package

DETAILA
Pin \#1 ID and Tie Bar Mark Options

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.200	0.300	0.008	0.012				
D	1.950	2.050	0.077	0.081				
D2	1.000	1.250	0.039	0.049				
E	1.950	2.050	0.077	0.081				
E2	0.400	0.650	0.016	0.026				
e	0.500							0.020
L	0.300	0.400	0.012	0.016				

W-Type 8L DFN 2x2 Package

